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Sequential Deuterium Exchange Reactions of Protonated 
Benzenes with D2O in the Gas Phase by Ion Cyclotron 
Resonance Spectroscopy 

Sir: 

Deuterium exchange has been used in mass spectrometric 
studies to determine the number of acidic hydrogens in a 
molecule. Together with knowledge of the heteroatom con­
tent from high resolution mass spectrometry, the results af­
forded by this method aid considerably in functional group 
identification and hence the elucidation of complex molecu­
lar structures.1'2 Hunt and co-workers have developed a 
simplified procedure utilizing chemical ionization mass 
spectrometry (CIMS) with D2O as the reagent gas.3 Their 
findings indicate that hydrogen bonded to heteroatoms in 
aliphatic alcohols, phenols, carboxylic acids, amines, am­
ides, and mercaptans undergo essentially complete ex­
change in the ion source prior to protonation by the reagent 
ions. In addition they report that unsaturated compounds 
such as benzene, stilbene, and 3,3-dimethyl-l-butene fail to 
exchange, and that the extent of substitution with ketones, 
aldehydes, and esters is negligible. 

We wish to report preliminary results on a novel deuteri­
um exchange reaction, observed using ion cyclotron reso­
nance (ICR) spectroscopy,4 which have a bearing on the 
above findings and interesting implications for further 
study. In apparent contrast to the results of Hunt et al., se­
quential reactions of protonated aromatic compounds with 
D2O in the gas phase occur which lead to various degrees of 
ring deuteration. For example, in a mixture of benzene and 
D2O (Figure 1), reactions 1 and 2 lead to the formation of 
C6H6D+ which in further reaction with D2O undergoes 
rapid stepwise exchange of H for D (reaction 3).5 From 
these data it is possible to determine the number of deuteri-

Table I. Summary of Deuterium Exchange Results 
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Figure 1. Temporal variation of the abundances of the variously deu-
terated benzene ions observed in a mixture of benzene (2 X 1O-7 Torr) 
and D2O (3.5 X 1O-6 Torr) at an electron energy of 70 eV. Other 
species present, not included in the normalization, are D2O+ and 
DsO+, which are precursors to CsH6D+ , as well as C6H6

+ and frag­
ment ions derived from benzene. 

urns exchanged in addition to kinetic parameters describing 
the exchange process.6 

D2O
+ + C6H6 — C6H6D

+ + OD 

D3O
+ + C6H6 — C6H6D

+ + D2O 
(D 
(2) 

C6H7-„D„+ + D2O C6H6_„D„+1
+ + HDO 

( n - 1 - 6 ) (3) 

From the data summarized in Table I for the halo and 
alkyl substituted benzenes it is apparent that deuterium ex­
change varies significantly for different structural isomers. 
Thus while 0- and p-difluorobenzene exchange all hydro­
gens rapidly, the meta isomer slowly exchanges only a sin­
gle hydrogen. A similar comparison can be made for the xy­
lenes and trisubstituted benzenes. These results are espe­
cially important since the mass spectra of these isomeric 
compounds are in general indistinguishable.1* 

Species such as the benzoyl cation, radical cations, and 
CvH7

+ derived from toluene and cycloheptatriene do not 
undergo exchange. It appears that ring protonation is a nec­
essary condition for exchange to occur. Two experiments 
which ascertain the site of protonation of substituted aro-
matics (Table I) include the observation of thermoneutral 
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a NA indicates not applicable, + exchange observed, and — exchange not observed. 6The symbols f, m, and s indicate, respectively, fast (1 -5 
x 10~10 cm3 m o r 1 sec"'), medium (10"" -10" 1 0 cm3 mol"1 sec"1), and slow ( « 1 0 " " cm3 mol"' sec"1) reaction rates. CR and S indicate that 
evidence was obtained for the favored site of protonation being on the ring and substituent, respectively. With sufficiently acidic donors both 
sites may be protonated. 
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>Q~ OCH3 + C6H5OCH3 

H. 

H 
OCH3 + C6DH4OCH3 (4) 

proton transfer processes (e.g., reaction 4 which proceeds to 
completion)9 and a comparison of the relative extent of pro­
ton and deuteron transfer to stronger bases such as pyridine 
(e.g., reactions 5 and 6). With sufficiently acidic donors 
(e.g., DsO+ reacting with benzonitrile) protonation occurs 
on both the ring and the substituent. In this case reaction 4 
is observed but does not proceed to completion. In the case 
of reactions 5 and 6 this situation is clarified by using an 
equilibrated population whereby several collisions with the 
aromatic species lead to deuterium transfer to the more 
basic site in the molecule. 

(1,3,5-C6H3F3)D* + C5H5N- 42« 

C5H5NH+ + C6H2DF3 (5) 

C5H5ND* + C6H3F3 (6) 

While necessary, it is evident from the data in Table I 
that ring protonation is not a sufficient condition to observe 
exchange. The exchange mechanism most likely involves 
transfer of the labile proton to D2O forming an activated 
complex of D20H+ with the aromatic compound. This 
species dissociates to regenerate the isotopically exchanged 
reactants. We are currently investigating a range of aro­
matic compounds including naphthalene, anthracene, and 
biphenyl as well as a variety of other saturated and unsatu­
rated carbonium ions where the extent of exchange may 
clarify additional features of the reaction mechanism and 
provide other interesting structural information. 
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Characterization of a Readily Accessible 
Copper(III)-Peptide Complex 

Sir: 

The tripositive oxidation state of copper occurs in a num­
ber of compounds, many of which are not stable in aqueous 
solution. Thus, crystalline NaCuCh can be prepared1 but it 
decomposes in solution in a few seconds.2 Pulse radiolytic 
studies3 have generated Cu(III)-aquo and Cu(III)-amine 
complexes, which are transient species with rapid rates of 
decay. Electrochemical preparation of Cu"1 complexes of 
macrocyclic amines has been possible in acetonitrile solu­
tion but the complexes are unstable, undergoing spontane­
ous reduction to Cu".4 Copper(III) intermediates have been 
proposed in the chloroiridate oxidation of copper(II)-oligo-
peptide complexes which leads to peptide oxidation and 
fragmentation.56 Crystalline, highly insoluble Cu(III)-bis-
(biuret) and Cu(III)-bis(oxamide) compounds have been 
characterized.7'8 Alkyl-substituted bis(biuretato) complexes 
of Cu"1 were sufficiently soluble and stable in DMSO to 
permit measurements of their electronic spectra, NMR 
spectra, and polarographic properties,8 but aqueous solu­
tions were not prepared. Recent studies in this laborato­
ry9'10 of the autoxidation of copper(II)-peptide complexes 
suggested that relatively long-lived Cu(HI)-peptide com­
plexes could be formed in aqueous solution. In the present 
work we confirm that this is the case and show that with 
peptide complexes Cu"1 is a much more accessible oxida­
tion state than had been realized. 

Cu(II)-tetraglycine can be oxidized quantitatively to 
[Cu'"(H_3G4)] - (I) by IrCl6

2-. This oxidation is revers­
ible with pH variations. If the iridium species are removed 
by anion exchange separation, the resulting solutions of 
[Cu'"(H-3G4)]- are slow to decompose in weakly acidic 
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media. There are several types of evidence which show that 
the complex does indeed contain Cu1". (1) The Cu" elec­
tronic absorption spectrum is lost and an intense absorption 
band at 365 nm, characteristic of Cu"1,8 is formed as a re­
sult of the oxidation. (2) The EPR spectrum characteristic 
of the d9 Cu" disappears upon oxidation as expected for a 
diamagnetic d8 Cu"1 complex. The EPR signal slowly reap­
pears as the Cu1" complex decomposes. (3) The oxidized 
complex is sluggish in its substitution reactions. This is 
characteristic of d8 square-planar complexes such as the 
proposed [Cu11HH-BG4)]- species. In solution the oxidized 
complex passes through a Chelex 100" ion exchange col­
umn which, under the same conditions, will quantitatively 
remove Cu" from its tetraglycine complex. Similarly, the 
rate of reaction of acid with the oxidized complex is much 
slower than with [Cu"(H_3G4)]2-. (4) The proposed Cu"' 
complex is capable of oxidizing ferrocyanide ion, iodide ion, 
and sulfite ion. (5) The acid decomposition of the oxidized 
complex regenerates 50-65% of the tetraglycine that was 
initially present and releases small amounts of O2. The 
above experimental observations strongly support the pro­
posal that the metal center rather than the peptide is initial­
ly oxidized by IrCl6

2-. In the decomposition reactions, how­
ever, some of the peptide is oxidized. 

The molar absorptivity of the [Cu11HH-BG4)]" complex 
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